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Characteristics of turbulent boundary layers at low 
Reynolds numbers with and without transpiration 

ByROGER L. SIMPSON 
Institute of Technology, Southern Methodist University, Dallas, Texas 

(Received 14 April 1969 and in revised form 2 February 1970) 

An extension to Coles’s (1956) ‘law of the wall-law of the wake’ formulation for 
incompressible unblown boundary layers with momentum thickness Reynolds 
number Re, > 6000 is made for Re, < 6000. It is found that K = 0.40, the von 
KArmAn constant for Re, > 6000, is replaced by R = 0.40 (Re,/6000)-* for 
Re, < 6000. Based upon the data of Simpson (1967) this formulation is extended 
to injection and undersucked (dO/dx > 0) flows in ‘law of the wall’ and ‘velocity- 
defect ’ representations. This law of the.wal1 for the logarithmic turbulent region 
and Reichardt’s sublayer variation of cfiI/v are used to obtain a continuous 
expression for E ~ / V  as a function of U+, VL, and Re, for the wall region. This 
expression is in reasonable agreement with the generated eM/v  blowing results 
and in less agreement with the unblown and suction results. Eddy viscosity and 
mixing length results confirm that sM/6*Um cc R2 and I /SK R for the outer region 
and that cnf/6*Um and 116 are substantially independent of blowing and moderate 
suction, as also reflected by the velocity defect representation for injection and 
suction. 

1. Introduction 
I n  recent years, considerable effort has been devoted to the study of incom- 

pressible turbulent boundary layers with uniform injection (blowing) or suction 
a t  the surface. Most of these investigations have logically begun with skin- 
friction and velocity profile correlations for the special case, the unblown flat 
plate. The experimental skin-friction coefficients for the flat plate with uniform 
injection are commonly presented in the form (Cf/Cfo)Rex us. b, the ratio p,V,/p, 72, 
( iCfo ) ,  where &Cfo is the zero injection case value. Here &Cf is the friction factor 
defined by rw = &Cf (pm U“,, T is the shear stress, U is the velocity in the main- 
stream direction, V is the velocity perpendicular to the wall and subscripts w 
and 00 indicate wall and free-stream conditions respectively. Several theories 
(Dorrance & Dore 1954; Rubesin 1954; Kendall et al. 1964; Torii, Nishiwaki & 
Hirata 1966; Stevenson 1964) show these experimental curves to be a function 
of Re,. Simpson, Moffat & Kays ( 1 9 6 9 ~ )  present (Cf/Cfo)Reevs. B, the ratio 
p,,V,/p, U, (&’,), and have shown that this latter form of plotting transpiration 
data superimposes the data in the range 600 < Re, < 6000 for uniform and 
variable injection and suction. 

As in the unblown case, all known investigations of transpired turbulent 
boundary layers present mean velocity profile correlations in terms of the local 
skin-friction coefficient. Many investigations present extensions of two commonly 
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accepted velocity profile functions for unblown layers, the law of the wall and 
Coles’s (1956) law of the wake. However, it is no surprise that many of these 
extensions for blowing differ since the experimental skin-friction coefficient 
results of many investigators differ drastically for the same blowing condition 
(Simpson et al. 1 9 6 9 ~ ) .  

For this reason Simpson (1967) and Simpson et al. ( 1 9 6 9 ~ )  attempted t o  
review the existing works, pointing out possible sources of experimental dis- 
crepancy described by the experimenters that  could have produced different 
values of $7, for the same blowing condition. They found the uniform injection 
data of Simpson (1967) in substantial agreement with the results of Kendall 
(1959) and Stevenson (1964), Rotta (1966), and Kinney (1967) results from the 
Mickley-Davis (1957) data on a (Cf/CfJReZ vs. b plot. I n  other investigations, 
acceptable unblown flat plate data were not reported; and, in others again, there 
were uncertainties in the blowing condition, or in the method used to evaluate 
gCf experimentally. 

To add to the confusion, many investigators attempted to extend the unblown 
law of the wall and law of the wake to  blown and sucked flows when Re, < 6000, a 
range of Reynolds numbers in which Coles (1962) observed his law of the wake 
formulation to  fail for unblown flows. Coles’s observations were based on nearly 
500 mean velocity profiles. 

The present work has the broad threefold objective o f  (i) extending Coles 
(1956) law of the wall-law of the wake formulation to  unblown flat plate layers 
with Re, < 6000; (ii) extending this formulation to the cases with blowing or 
suction; and (iii) extending eddy viscosity and Prandtl mixing length models to 
blowing and suction cases for use in turbulent boundary-layer prediction 
programs. 

2. Experimental apparatus and the skin-friction results 
The Stanford heat and mass transfer apparatus, as described in detail by 

Moffat & Kays (1967, 1968), was used in the experiments of Simpson (1967). 
The stagnation pressure probe instrumentation and fluid dynamic characteristics 
of the apparatus are discussed in detail by Simpson (1967) and Simpson et al. 
(1969). As a result of qualification tests, the boundary-layer flow was found to be 
essentially steady, two-dimensional, constant property, constant free-stream 
velocity turbulent flow over a smooth uniformly permeable flat plate. Simpson & 
Whitten (1968) calibrated Preston tubes with transpiration on this apparatus. 
Heat transfer and temperature profile data from this apparatus are reported by 
Moffat & Kays (1967, 1968), Whitten (1967), and Whitten, Kays & Moffat 
(1970). Simpson, Whitten & Moffat (1969b) used data from this apparatus to  
determine the effect of transpiration on the turbulent Prandtl number distribu- 
tion in the boundary layer. The unblown flat plate skin-friction and heat transfer 
coefficient results agreed with accepted correlations while the mean velocity 
profiles were found to be ‘normal’ according to the criterion proposed by Coles 
(1962). The $C’ results are discussed in considerable detail elsewhere (Simpson 
1967; Simpson et al. 1969), but will be briefly reviewed here. 
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Two methods were used in determining the friction factor. One method used 
the momentum integral equation, differentiating a smooth fit of 

Re, -/oRexp,Vw/pm U,d(ReA) us. Re, 

experimentally determined along the flow duct for each run. The second method 
used the viscous sublayer equation, relating experimental velocity points in the 
viscous sublayer to $7 in terms of the mass flux m” ( = (p V),) and (p U),. With the 
exception of two out of 95 velocity profile traverses, the values of &Cf for a given 
traverse obtained by both methods agree within the uncertainty estimated a t  
20:l odds. The $Cf values used in all velocity profile correlations are ‘best 
estimate’ values presented and discussed by Simpson et al. (1969), and in 
general taken to be the momentum integral equation results. 

The range of test conditions for the blowing and suction data of Simpson 
(1967) can be summarized as follows: 

X-Reynolds number 1.3 x 105 to 2 x 106. 

Blowing fraction, m“/(pU), 

Free-stream velocity, ft./sec 

Free-stream temperature, O F  

- 0.00765 to 0.00958. 

42 to 47. 

64 to 90. 

This, with the several injection and suction boundary conditions: (i) hrr constant 
along the flow, (ii) h”cc X-o.2 which results in a constant B flow, (iii) h“a X, and 
(iv) h”ccX-4.  (By contrast, the data of Stevenson (1964), McQuaid (1966), 
Kendall (1959), Mickley, Smith & Fraser (1954, 1957), and all other distributed 
suction data, were obtained for m” nominally constant along the flow.) 

3. Unblown flat plate 
Coles (1956) presented the equation 

where 

for the boundary layer on a flat plate in a uniform velocity stream, y is the distance 
along a line perpendicular to the plate, 7 = y/6 (the dimensionless distance), 
6 = y at U/Um = 0.990 (the boundary-layer thickness), IT is a parameter indepen- 
dent of X and y ,  U+ = U/U, and y f  = yU,/v, where U ,  = (r,/p)* (the shear 
velocity). Outside the sublayer, the velocity profile similarity can be expressed 
in terms of 9 by a relationship known as the velocity defect law: 

which is a result of the logarithmic variation off in (1). Based upon a survey of 
experimental data he presented 

1 rl 
U+ =-lnIy+l+C+,~(q),  K (3) 
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772 R. L. Simpson 

where K = 0.40, C = 5.1, w(p)  is the Coles ‘wake function’ 

(w(0)  = 0, w(1) = 2, and IO1 wdp  = I ) ,  

and rI = 0.55 for constant free-stream velocity flows. Hence, with U 2: U, a t  
y = S in (3), (2) becomes 

for the velocity defect relation. 

Y l S  

FIGURE 1. Zero injection data. Simpson (1967) : 0 ,  Re, = 1971 ; x ,3352;  +, 4318. 
Klebanoff (1954): A, Re, = 7750. 

Coles (1962), upon examining nearly 500 unblown flat plate profiles, con- 
cluded that the velocity defect law, (a), does not apply when Re, < 6000. 
Denoting the maximum value of g( II, 7) as the strength of the wake, he found this 
parameter was sensitive to the history and environment of a particular How, and 
was a well-defined function of Re,, making possible precise classification of 
bounda,ry-layer data. Among the data he considered ‘normal ’ or representative 
were thedata of Wieghardt (1943), which he used in his 1956 work, and Klebanoff 
(1954). The data of Wieghardt are considered as good data by workers in the field, 
since it was the only adiabatic flat plate flow considered by the 1968 turbulent 
boundary layer prediction conference (Kline, Cockrell & Morkovin 1968). 

In figures 1 and 2, the data show a definite UlU, vs. p similarity independent of 
Re, in the region outside the sublayer for 1000 < Re, < 6000. As shown in 
figure 2, there is a departure from this outer region similarity at  higher Reynolds 
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(1954); A ,  Wieghardt (1943); +, Simpson (1967), -, equation (6), R = 0.40 (Re,/6000)-*, 
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numbers. This similarity in the lower Reynolds number range is clearly in conflict 
with (4)) since UT = U, (+C,)S N Reg*. From another point of view, the quantity 
(U, - U)jU, from these data was interpolated and plotted in figure 3 as a function 
of Re, for several constant values of 7, The &Cf values used were the values 
reported by the experimenters. Note that (4) only holds for Re, greater than 
about 6000. 

In  order to modify the velocity defect relation to account for the lower Rey- 
nolds number range similarity, it is sufficient to  allow K t o  vary proportional to  
Reg# or (-iCf)$ for Re, < 6000, while remaining fixed a t  higher Reynolds numbers. 
As shown in figure 3 this hypothesis fits the data well. (The departure of the 
7 = 0.05 data from this hypothesis for Re, less than 1000 is due to the data being 
in the viscous sublayer). 

Millikan's argument for a logarithmic overlap region, in which the law of the 
wall and velocity defect relation hold simultaneously, remains unchanged if K 

is allowed to  vary with Re,. Consider the variable K law of the wall, 

and velocity defect relation 

where Q = 0.40 (Re,/6000)-* for Re, < 6000 and Q = K = 0.40 for Re, > 6000. 
Hence 

from ( 5 ) )  and 

from (6) since ~ ' ( 7 )  + 0 in the region near the wall. Thus, both (5) and (6) remain 
valid and overlap in a region near the wall. As shown in figures 1 and 2,  the outer 
edge of this logarithmic region is at about 7 = 0.1. 

To determine C(Re,) i t  is necessary to  use the UIUm us. 7 similarity in the 
logarithmic region. Hence, using ( 5 )  for a given y/6 with +C, = 0-0128Re;t 
produces 

C(Re,) = Re$[7*90 - 0.737 In I Re,/]. (8) 

The result from this equation is shown on figure 4 for Re, = 1187. The results 
using Coles (1956)  constants in ( 5 )  are also shown for Re, > 6000. Note that over 
the range 1000 < Re, < 6000 the logarithmic relation equation (5) pivots within 
the logarithmic region and near universal U+ vs. y+ similarity is obtained for 

Thus, the idea of K varying with Re, for Re, < 6000 is plausible and consistent 
y/6 < 0.1. 

with experimental data. 
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4. Constant and slowly varying injection and suction cases 
Turbulent velocity profiles for uniform free-stream velocity layers with 

constant or slowly varying wall-boundary conditions obey empirical similarity 
laws, generally described as a ‘velocity defect ’ law in the outer region of the flow 
and a ‘law of the wall’ in the inner flow (Rotta 1962). 

4.1. T h e  law of the wall 

I n  the region near the wall the flow is governed by the local conditions only and 
historical effects (the influence of the flow in the outer region) are contained in the 
shear velocity U, (Rotta 1962). (As discussed in 5 3 for the unblown flat plate, the 
turbulent ‘law of the wall’ values Q (Re,) and C(Re,) in the low Reynolds 
number range 1000 < Re, < 6000 are functions of Re,, and therefore contain 
some historical effects.) For constant property flow over a smooth uniformly 
permeable flat plate, the velocity U near the wall depends only on y ,  v, Vw and 
U,, and Be, for the low Reynolds number range. From dimensional analysis, 
one obtains 

u+ = f ( y + ,  V& Re,), (9) 

where V$ = V,,/U,. Equation (9) leads to what is known as the ‘law of the wall 
with blowing and suction’. 

We will consider two portions of the wall region. The portion nearer the wall is 
governed by a molecular viscosity and is known as the ‘viscous sublayer’, 
while the second portion is described by a turbulent mechanism and is known as 
the ‘fully turbulent portion’. A third layer, the ’buffer layer’ is sometimes 
assumed to exist between these two portions, but will not be discussed here. 

Consider the X direction momentum equation with a purely laminar viscosity 
mechanism. Neglecting the X direction derivatives, 

au a2u 

d y  dy2 
v - = v - .  

Integrating (10) with the conditions U = 0 a t  y = 

at v (dU/dy )  = UF = rw/p 

0 and 

y = o  

produces (11) for the inner portion (Kendall 1959; Black & Sarnecki 1958; 
Stevenson 1963 a)  : 

This equation is the viscous sublayer equation, which was used to obtain +C’ by 
the viscous sublayer method. 

Many investigators studying blowing and suction have used the Prandtl 
mixing length hypothesis to  describe the turbulent portion. First, the X direction 
momentum equation is written, neglecting X derivatives : 

au 1 d r  v - =-- 
w a y  Pay’  
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Solving (12) with the condition 7 = rW a t  y = 0 yields 

7 = 7w+p,,vwu. (1 3) 

Using the mixing length hypothesis with the assumption that the mixing length 
is proportional to the distance from the wall results in 

where s1 is independcnt of y. Equations (13) and (14) can be combined and 
integrated to produce 

where U;Z, yi-, and Q are in general functions of V$ and Re,. For V$ = 0, (15) 
reduces to  the formula, 

U+ = ( l / s 1 ) l n ~ y + ~ - ( l / s 1 ) l n ~ y ~ ~ + U $ ,  (16) 

which is another form of ( 5 ) .  
Stevenson ( 1 9 6 3 ~ )  presented an excellent summary of the work of the many 

investigators (Mickley et al. 1954; Black & Sarnecki 1958; Clark, Menkes & Libby 
1955; Rubesin 1954; Dorrance & Dore 1954), who have obtained (15) in one form 
or another, assuming a constant Q, although most of the data are in the low 
Reynolds number range. For fully turbulent flows with V,/U, < l O W ,  the value 
of Q has been bound, in all studies, to  be independent of V$ (Stevenson 1 9 6 3 ~ ) .  
Black & Sarnecki (1958), in particular, argued that the mixing-length coefficient 
s1 should be independent of yo, provided V,  is small compared to  U in the region 
where (14) appears to hold. They demonstrated that the mean flow curvature 
near the wall, which was presumed to  affect sly, is still small, as in the unblown 
case, for flows with Vw/Um as high as I n  Simpson (1967), a constant value 
of Q = 0.44 was used in (15) to  fit Simpson’s data. It is not surprising that this 
value fits the #us. yf data better as a whole than Q = K = 0.40, since nearly all 
the data of Simpson were in the low Reynolds number range 1000 < Re, < 6000, 
where 0.4 < Q < 0-5 for unblown flows. 

Different investigators have evaluated U$ theoretically as different functions 
of V;, depending upon whose experimental results they were attempting to  fit. 
As pointed out by Black & Sarnecki (1958), one can develop numerous theories 
which describe U,f and y i  as functions of V$, but the final test lies with the com- 
parison with experinlental data. Hence, in Simpson (1967)) these relations were 
determined empirically from Simpson’s data. Using the unblown constants 
17: = y,f = 11 and s1 = 0 4 4 ,  which seem to fit the low Reynolds number 
unblown data as a whole, U$ was assumed to be independent of V$ and the 
variation of y,’ was examined. Figures 5 to  7 show typical plots of #us. y+ for 
several h“ variations obtained by Simpson (19659, where 

2 
= 7 [( 1 + U+V&)* - (1  + 11 V 3 ] ,  

v w  

for blown and sucked flows, and # = U+ - 11 for unblown flows. 
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These data indicate that with U$ = 11, the value y,' in (15) is substantially 
independent of V;. A definite logarithmic region exists for 30 < y+ < 100. Thus, 
(15) was written (Simpson 1967) in the form, 

2 1 Y+ - [ ( l+U+V,+)~- ( l+11V,+) f ]  =---In - . 
7; 0.44 1111 

Rather than go into great detail discussing the uncertainties in U+, y+ and 
$ associated with these data in the fully turbulent portion, several general 
remarks will be made. For y+ > 20 the uncertainty in yf due to uncertainties 
in y are very small compared to uncertainties in U,. Likewise, for U+ the main 
source of uncertainty is in U,, if we do not consider the failure to correct Pitot 
tube readings for turbulence as an error. Since U, = U,(&)4 for a constant 
property flow, the percentage uncertainty in U+ and y+ for a given traverse is 
approximately one half the percentage uncertainty given by Simpson et al. 
(1969) for $Cf. 

The uncertainty in @ for a given traverse was found to be nearly equal to the 
numerical uncertainty in U+, providing the uncertainty in U i  is negligible. 
Figure 8 shows $ and its uncertainty envelope at  y+ = 100 for 63 traverses from 
flows with m" = constant, m" cc x - O . ~ ,  m"0c X, and m"cc X - f .  The average value 
of @ at y+ = 100 for these traverses is 4.9, 2 % below the value given by (17). 
The uncertainty envelope may seem wide until one considers that a 5 yo uncer- 
tainty in +Cf for an unblown flow produces a 2.5 Yo uncertainty in determining 
y+ = 100 and 8 yo uncertainty in 6. 

Based on five experimental profiles (Stevenson 1964) in the low Reynolds 
number range 1000 < Re, < 6000, Stevenson ( 1 9 6 3 ~ )  proposed a fully turbulent 
portion mixing length relation, 

2 1 
[ (1 + U+V,+)?z - 11 = - In I y+I + c, 

v w  Q 

where Q and c are constants. Using 16 suction profiles and 8 blowing profiles 
from Mickley et al. (1954, 1957)t, Black & Sarnecki (1958) proposed 

where U: are Q are constants. This equation can be obtained from (15) and the 
second assumption of Rubesin (1954), i.e. is invariant with blowing, while 
y+ is given by (1  1) with U+ = Uh. Kendall (1959) also found that (19) fitted his 
experimental results, which are mainly for Re, < 6000. With Q = 0-44 and 
U: = 11, the values of 6 at y+ = 100 or @loo are given by 

t The 1954 experimental results were criticized by Mickley & Davis (1957) as being 
unreliable. The 1957 +C, results have been recently shown by several investigators to have 
been obtained from the momentum integral equation without accounting for the small 
imposed pressure gradient. The corrected results of these investigators are presented by 
Simpson el aZ. (1969). 
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from (1 8), and 

from (19), and are shown on figure 8. 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0-6 

vw. 
FIGURE 8. - - - - -, uncertainty envelope, Stevenson (1968) ; - -, uncertainty envelope, 
data of Simpson (1967); -, from (17),  the ‘law of the wall’; - - - , Ao0 from (181, 
Stevenson’s relation; - - - - , $loo from (19), Black & Sarnecki’s relation. 0, data of 
Kendall (1959) ; 0, of Favro et al. (1966) ; 0 ,  of Simpson (1967). 

Equation (l?), evaluated at y+ = 100, fits the present data better than (20)  
and (21). r$ at any other y+ in the fully turbulent portion, as given by (17), (18) 
and (19)’ differs by 1/0.441n ly+/lOOl from @loo. Thus the relatively large dis- 
crepancy between Stevenson’s relation, (1 8), and Black & Sarneclii’s relation, 
(19)’ and the experimental data of Simpson prevails throughout the fully 
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turbulent portion. Hence, (17) fits the fully turbulent data of Simpson much 
better than do Stevenson’s relation (18) and Black & Sarnecki’s relation (19). 

The apparent discrepancy between (17), (18)’ and (19) is due primarily to 
differences in the experimental gCf values used by various investigators in 
determining these equations from experimental U+ vs. y+ and V$ profiles. 
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FIGVRE 9. Data for given Re, and V,/U, : 

Experimenter Re8 VwlU, U,, ft./seo +c, 
0 Simpson (1967) 3464 0.0034 41.94 0.00087 
X 3484 0.00329 43.67 0.00093 
0 McQuaid (1966) 3516 0.00327 51.06 0.00042 

0 4510 0.00327 50.2 0.00065 
0 Kendall (1959) 2967 0.00321 50.1 0~00098 

Figure 9 illustrates this point: data from Simpson (1967) and McQuaid (1966), 
for approximately the same Re, and VJUm, are found to be in good agreement in 
UjU, vs. yU& co-ordinates. There is reasonable agreement with Kendall’s 
(1959) data, when one interpolates between his We, = 2967 and Re, = 4510 
profiles. However, McQuaid’s $I?, value is much lower than either Kendall’s or 
Simpson’s values, so this profile cannot correlate with the other profiles on a 
U+vs. y+ basis. Thus, the law of the wall supported by McQuaid’s data must be 
different from the relations supported by the data of Kendall and Simpson.? 

The data of Stevenson (1964) and McQuaid (1966) are shown by Stevenson 
(1  968) to support (18) and lie with an uncertainty envelope for c when *Cf is 
determined by the momentum integral equation and only dO/dx is uncertain by 
k 0.00015. (The momentum integral equation was the only independent means 
Stevenson (1964) and McQuaid (1966) used to obtain +Cf.) An uncertainty 
envelope for (ploo from (20) was calculated from Stevenson’s uncertainty envelope 
for c and is shown on figure 8. Also shown on figure 8 are (ploo values obtained from 

Dr L. C. Squire of Cambridge University (1969) reports that (17) describes the data of 
McQuaid when the +af results of Simpson (1967) at the same Vw/U, and Re, are used in U,. 
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the data of Kendall (1959)’ which support (19) and (21). Because the data of 
Kendall fell below his uncertainty envelope for c, Stevenson (1968) concluded 
that the discrepancy between the experimental results of S tevenson and McQuaid 
and Kendall’s results were possibly due to  different surface roughness and porosity 
conditions. 

In  a comment 011 that work, Dahm & Kendall(l968) point out that  +Cf values 
from the two-dimensional momentum integral equation depend not only on the 
accuracy of d0/dx,  but also on the accuracy of the blowing rate. They further 
illustrate that a t  a blowing rate VJU, of 0.005 (V$ M 0.26) a t  Re, = lo6, a If: 1 % 
uncertainty in both dB/dx and V’JU, yields about 5 32 yo uncertainty in BC,. 
They noted that Stevenson’s data were obtained in a fully developed transpired 
region whose length is of the order of only 1 ft., making d0/dx difficult to obtain 
accurately. 

Kendall(1959) obtained QC, values by a sublayer technique similar to the one 
used by Simpson (1967) because of the difficulty of obtaining valid QCf values 
from the momentum integral equation a t  high blowing ( v , / U ,  > 0.003) on the 
apparatus. As pointed out in $2, the momentum integral equation and sublayer 
QCf results of Simpson (1967) closely agree within experimental uncertainties 
estimated a t  20: 1 odds. Simpson et al. (1969) pointed out that Kendall’s +C’ 
results are in substantial agreement with Simpson’s (1967) uniform injection 
results on a (Cf/Cfo)Rez us. b basis, Kendall’s results being slightly lower at  higher 
values of b. As shown on figure 8, q5100 from Kendall’s data is best represented by 
Black & Sarneclri’s relation, (19). However, with exception of the V; M 0.26 
data, from Kendall’s data is nearly constant with V:, which is not in gross 
disagreement with the form of (17). 

All these QCf data have been obtained from velocity profile surveys in the flow. 
Direct +Cf measurements with blowing using a floating balance are reported by 
Dershin, Leonard & Gallaher (1967) for a 3.18 Mach number flat plate flow. 
These results agreed closely with Rubesin’s (1954) theory, which was found to  
agree closely with the subsonic +Cf results of Simpson and of Kendall on a 
(Cf/C’JRe, wus. b basis (Simpson et aH. 1969). Hence although some discrepancy 
between the various +Cf results may be due to different surface roughness and 
porosity conditions, results from the momentum integral equation are very 
sensitive t o  small errors in d8/dx  and y,,/lJm, which possibly accounts for some of 
the gross discrepancy between the U+ us. y-k and V& results of Stevenson and 
McQuaid, and the results of Kendall and Simpson. Thus, if we believe the &Cf 
results of Simpson, (17) is a plausible ‘law of the. wall with blowing’ using a 
constant !2 for the range 1000 < Re, < 6000. 

Unlike the injection case, the transpiration term for suction is added to the 
momentum thickness gradient to obtain +Cf from the two-dimensional momen- 
tum integral equation, yielding very accurate results. Note that the terms in 
(1 + U+V$)* and (1 + 11 V; )* tend to  cancel, making 4 sensitive to small errors in 
velocity. Thus, the experimental difficulties with obtaining suction data lie with 
making and using very small probes for accurate velocity surveys of the thin 
boundary layers. 1- 

t For footnote see facing page. 



Characteristics of turbulent boundary layers 7 83 

All suction results shown in figure 8 are for undersucked layers, df?/dx > 0, 
that possess the ‘wake component ’ or departure from a logarithmic inner region 
equation in the outer region. No turbulent critical layers, dO/dX = 0, were 
reported by Simpson (1967) although three oversucked layers, de/dx < 0, 
that possessed laminar asympototic velocity profiles were recorded. One 
m“ cc X-o2 layer with dejdx > 0 appeared to have no wake component until near 
the exit of the flow channel, indicating a strong influence of the high suction near 
the channel entrance. It is interesting to note that V,/U, a t  the channel entrance 
for this flow was about the same as for one of the uniform suction flows with 
dOldx < 0. Also shown in figure 8 are results from the data of Favre et al. 
(1 966) for undersucked layers. Both sets of data support (17) as a ‘law of the wall 
for undersucked layers’, using a constant SZ for the range 1000 < Re, < 6000. 

As discussed in 5 5,  the Reynolds number variation of SZ in the range 1000 < Re, 
< 6000 with blowing and suction is the same as for the unblown case. If we 
incorporate this variation of !2 while not disturbing the blowing and suction 
correlation of (1 7), it is sufficient to write 

q5 = - In - +M(Re,), ; i::I 
where SZ = 0.40 (Re,/6000)-4, and 

M(Re,) = Re$[9.92-0.7321n IRe,l]- 11, 

for Re, < 6000 and SZ = K = 0.40 and M(Re,) = 0.10 for Re, > 6000. Equation 
(22) reduces to ( 5 )  and (8) for zero blowing, and (17) when !2 = 0.44. As for the 
unblown case, the logarithmic relation (22) pivots (figures 5-7) within the logarith- 
mic region for 1000 < Re, < 6000 and near universal q5 vs. yf similarity is ob- 
tained. Note that, as in the unblown case, the Reovariation of SZ cannot be strongly 
detected by q5 vs. y+ data but requires examination of the ‘velocity defect ’ data 
representation and the existence of a logarithmic overlap region. 

4.2 The velocity defect law 

Stevenson (1963b) proposed an extension of (2) and (4), the unblown velocity 
defect relation, to the outer region of blown and undersucked boundary layers. 
This relation is 

which reduces to (2) when V, = 0. He also presented a more general dimensional 
similarity argument for a logarithmic overlap region than that presented by 
Millikan. He found that the sufficient condition for a logarithmic overlap region 
between the inner flow, represented by (15), and the outer flow, described by 

t Siinpson (1967) noted that without making stagnation pressure gradient and wall 
effects corrections, experimental laminar asymptotic suction profiles could be obtained 
within a few ten-thousandths of an inch of the theoretical curves with his probes. This 
discrepancy was smaller than the estimated uncertainty of locating a probe with respect to 
the test wall. 
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(23), is that the form of the term containing U is the same for each region, i.e. 

As in the unblown case, the data for flows with constant V, (figure 10) and 
cc X-o2 (figure 11)  show a definite U/Um us. 7 similarity independent of Re,, in 

2(1+ rr+v;)qvL. 

I I I I I 1 1 1 1 1  I I I I I 1 1 1 1  I I I I 1 1 1 1 1  I 1 I I l l 1  

-2.4 f 666 1 

I I I I 1 1 1 1 1  I I I l l l l l l  I I 1 1 1 1 1 1 1  I I I I I l l !  

10-2 lo-' 1 .o 
Y P  

FIGURE 10. UlU, vs. y/S from constant riz" flows. 

the region outside the sublayer for 1000 < Re, < 6000. As shown in figures 10 
and 11, there is a detectable departure from this outer region similarity a t  higher 
Reynolds number. As a logical extension of the low Reynolds number velocity 
defect relation, (6), it is proposed that 

2 
I?= - [ [ ( l+B)t - ( l+U+VV,+)~]  =E(7,11,Ree), (24) vz 

where 
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and !2 = 0.40 (Re, /6000)~,  for Re, < 6000, and Q = K = 0.40, for Re, > 6000. 
As shown in figure 12, this hypothesis fits the experimental results of Simpson 
(1967) for 94 profiles from flows with no blowing, constant V,, V,cc X--Oe2, V,cc X 
and v, cc X-S.? 

5. Eddy viscosity and mixing length distributions for transpired flows 
Presently, there are many turbulent boundary-layer prediction methods 

(Kline et al. 1968). Several of these methods relate the mean turbulent shear 
stress in the momentum boundary-layer equation to the velocity profile by 
mixing length theory, 

and a model equation for I ,  or by Boussinesq's 'eddy' viscosity theory, 

with a relation for em, where subscript t denotes turbulent contribution. To 
extend these methods t o  cases with blowing and suction, shear stress variations 
through the boundary layer must be determined to extract 1 and em from mean 
velocity profile data. 

5.1. Shear stress projiles 

Shear stress profiles were computed for the fully turbulent flows with m" = 
constant and ~ " o c X - - O ' ~ .  These profiles were based on the momentum and 
continuity equations and experimental velocity profiles. 

5.1.1. Boundary layer equations. Consider the two-dimensional X-momentum 
and continuity boundary-layer equations for uniform free-stream velocity, 

Rearranging (27) and (28), integrating each equation with respect to y, and 
applying the conditions p V / p ,  U, = pToV,/pm U, and r = rw at y = 0 yields 

Mickley et al. (1963, 1964, 1965) modified the constant i2 unblown defect relation, 
(4), for blown flows by substituting r-, the maximum shear stress in a blown boundary 
layer, for T ,  in U,. However, this conclusion was partly based on results obtained from 
using the uncorrected Mickley-Davis aCf values. The results of Smith (1963) and Fraser 
(1964) were also used to support this conclusion, although acceptable SG, values for the 
unblown case were reported by neither author. (Fraser fitted (4) to his unblown profiles, 
Reg < 6000, and obtained a nearly constant +Cf value. Had he used (6), he would have 
obtained the $Cf N Re;& variation.) The data of Simpson (1967) fail to support the 
Mickley et al. hypothesis. 
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when the resulting continuity equation is substituted into the momentum 
equation. 

5.1.2. Xhear stress profile computing equations. The numerical differentiation of 
experimental boundary-layer data with respect to  X produces uncertain results 
when only a few X-stations are available. Therefore, the following assumptions 
were employed to evaluate the left side of (29); 

(i) U/Um vs. y/6 similarity in the outer region, i.e. X dependency contained 
in 6. 

(ii) The contribution of the convective terms in the momentum equation is 
very small in the inner region where assumption (i) fails. 

... iae i d s  
(111) -- N -- 

e a x  6dx'  

profile computing equation, 
Using those assumptions in (29), andintegrating byparts, yields the shear stress 

(combined momentum and continuity) (30) 

for flows with negligible p/p, variations through the boundary layer. Equation 
(30) reduces to the two-dimensional momentum integral equation when y -+ co: 

5.1.3. Discussion of the shear stress results. Consider the validity of the above 
assumptions. Assumption (i) has been shown in 0 4.2 to be valid in the outer 90 % 
of a layer for all fully turbulent flows with m'' = constant and m"cc X-0.2. 

Because this assumption is not valid for the flows with m" cc X and the m" 
cc X-2, no shear stress profiles were generated for these cases. 

Assumption (ii) is concerned with the contribution from the inner region, 
where assumption (i) fails, to  the convective quantity, 

contained in (30). The terms on the right side of (32) tend to  cancel, and are 
small near the wall. A survey of 30 profiles showed that (S,./e) ( d e / d X )  contri- 
buted less than 2 % to  the right side of (30), 

at the inner edge of the UlU, us. y/6 similarity region. 
Assumption (iii) is useful for several reasons. It allows (30) to  reduce to  the 

two-dimensional momentum integral equation (31) as y-f 00. Secondly, it allows 
dO/dX to  be replaced by ;Cf + (p, Vw/pm U,) to  ensure that 7/pm V: -+ 0 as y-+co. For 
all profiles used to generate r/p, U:, (iii) was found to  hold within 5 %, using 
+Cf and pwV,/pm U, to  obtain dejdX and finite differences to obtain d S / d X .  

50-2 
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Simpson (1967) presented all r/r, profiles generated for the present turbulent 
flows with m" = constant and m"cc X-02. To be valid these profiles must satisfy 
the integral momentum and continuity equations. Since the two-dimensional 
momentum integral equation is built into (30)) it is satisfied by the shear profiles. 

The shear profiles should certainly satisfy the so-called ' mechanical energy 
equation ' 

(34) 

which is nothing more than (27) multiplied by U .  Using (28), integrating with 
respect y, and letting y +co, results in the 'integral mechanical energy equation ', 

with 

for constant free-stream velocity blown flows. For unblown flows, (35) reduces to 
the form presented by Rotta (1962). The d8*/2dX term of (35) has been inter- 
preted by Rotta as the rate of loss of mechanical energy in the boundary layer. 
The pu,Vw/2pm U, term represents the rate at which mechanical energy is absorbed 
by the blown h i d .  The 

term represents the rate of dissipation of mechanical energy produced by the 
mean shear stresses. 

The left side of (35 )  can be obtained directly from data, independent of any 
assumptions used to generate shear profiles. The right side can be deduced from 
the generated shear stress profiles. For each run, a power fit of the form hReg was 
made of 

Regr .&!& d(Re,). 
P m  urn 

Differentiating the result produces hp Re$-' for the left side of (35). The right side 
is easily fitted by kRe$ For flows with m" = constant the right side is found to be 
no more than 4 yo different from the left side at Re, = lo6, as shown by Simpson 
(1967). In the cases ~ " C C  X-o2 there is at  most a 3.5 Yo difference. As shown by 
Simpson (1967), the difference is in most cases less than 1 yo. It is concluded that 
the shear profiles satisfy the integral momentum, continuity, and 'mechanical 
energy ' equations to a good degree. 

Typical shear stress profiles for blown flows are normalized on the maximum 
shear stress and presented in figures 13 and 14 against U/Um for the cases m" = 

constant and m''wX--0.2. As one can see, near the wall the profiles are nearly 
linear and can be described by 

which is equivalent to (30) when convective terms are neglected. A maximum 
value is seen to occur near U/Um = 0.63. (Wooldridge & Muzzy 1966 also report 

r = r,+p, UV,, (36) 
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the maximum shear stress at  UIUm N 0.6 for 0 < B < 20.) This maximum 
existed for all blown shear stress profiles. In the outer portion (U/U, > 0.635), 
all blown r/rmax vs. UlU, profiles lie on a single curve independent of rh". 

All these profiles have been generated for Re, < 15,000 with the majority in 

0 0.L 0.4 0.6 0.8 1.0 

U P ,  

FIGURE 13. -, 7/'rmSs = r , / ~ , , , + p , ~ ,  U/r,,,: constant h" flows. 

0 0 0 0 
m"/(Pu), o*ooo 0.0019 0.0038 0-0095 

Ree 3177 5093 7130 14940 

1.0 

0.8 

0.6 
c 
c . 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1:O 

UIV, 

FIGURE 14. -, ~ /7 , , ,~=  = 7,/7,,,[ 1 + BU/U,] : constant B flows. 

O O O O O O A V 7 A O  
B 11.7 11.7 11.7 11.7 11.7 6.78 6.78 3.88 1.79 1.79 0.78 
Re, 3253 4813 6366 9181 11661 2880 4145 3464 2706 3673 2901 
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the range Re, < 6000, where the constant 0, K = 0.40, blown and sucked velocity 
defect law does not hold. Hence, these results for the outer portion and the 
apparent point of maximum shear should not be extrapolated for Re 9 6000. 

5.2 ,  Eddy viscosity and mixing length experimental resalts 

The quantities e;lf and 116 follow from the generated shear stress profile, (25) and 
( 2 6 ) ,  and the gradient a Ujay. Since the numerical differentiation of experimental 
data can be difficult and the resulting values questionable, the following pro- 
cedure was used in obtaining aU/ay. 

Polynomial least squares curve fits of the form, 

II =? 

and of degree i were made for a given U/U, vs. y data profile a t  a given X station 
for the jnumber of nearest data points surrounding and including a given point of 
interest. The first derivative of (37), for a given point, produced the derivative 
a( iJjU,)/ay for that point. The eM/v and 216 results from four different fits of the 
same velocity profile were examined to determine the degree of bias in eMjv 
and 1jS produced by the choice of polynomial fit. The polynomial fits tested 
contained: (i) i = 1, j = 5, and Z(y) = y; (ii) i = 3, j = 5,  and Z(y) = y; (iii) 
i = 2, j = 7, and Z(y) = y; and (iv) i = 2,  j = 5, and Z(y) = lnlyl. For a given 
velocity profile, the resulting slW/v and 118 profiles differed, respectively, by no 
more than 5 yo depending on the choice of polynomial fit. The results for i = 2, 
j = 5, and Z(y) = y are presented here. 

It is well known (Rotta 1962; Hinze 1959) that, near the wall, the flow is 
governed by the wall condition, molecular viscosity, and small-scale turbulence. 
In  the outer region of an unblown layer, eddy motion determines the momentum 
transport with the mean velocity profile, dimensionless eddy viscosity eIw/v*Um 
and mixing length ZjS profiles correlating on 7 (Rotta 1962; Escudier 1965) and 
slightly on Re,, as will be discussed below. Thus, v plays a rather small role in this 
region, being contained explicitly only in Re,. 

The present values for the unblown elw/v profiles near the wall are shown in 
figure 15 with sAI /v  results from hot-wire anemometer data using thc results of 
Kline (1965) from the data of Klebanoff (1954) and the results of Hinze (1959) 
from the data of Schubauer (1954). For a given y+ the present results agreed 
within 6 yo and within the scatter of the Kline and Hinze results for the region of 
U+ vs. y+ similarity and y+ > 20 (eilrl/v > 4). This good agreement with previously 
obtained eddy viscosity results supports the general acceptability of the present 
method in obtaining e,$f/v and 116. 

5.2.1. The wall region. In  figure 16, eAnl/v near the wall is shown as a strong 
function of V$ as well as y+, although correlation parameters are not obvious.? 

-f As added evidence of the surface smoothness, it was assumed (Simpson 1967), as in 
the unblown case, that the surface is aerodynamically smooth with transpiration if the 
r.m.s. roughness height K ,  remains in the viscous sublayer. Using the sublayer thickness as 
half the yf where EM/V = 1, yields K,UJV Q y+ of the sublayer. 
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Yf 
FIGURE 16. CM/V w.9. yf for given V,’ : constant h” flows. 

I7 X Z Y 0 0 
V; -0.0434 -0.0219 0 0.5826 0.0512 0.1606 
Ree 1015 895 3177 9722 2480 9429 
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I n  order to develop correlation parameters relating e,,{/v, V& and y+ (or U+), the 
ideas of Spalding (1961) and Kleinstein (1967) will be used: 

(i) enl/v N y+3 N U+3 in the viscous sublayer, according to the work of Rei- 
chardt (Rotta 1962). 

(ii) eM/v must be consistent with the velocity profile correlation of the logarith- 
mic region. 

Thus, using (13) and (26) we obtain 

( l+U+V,+)= ( 1+- €:) __ "d++* 
Equations (14) and (26) can be combined to obtain 

for the logarithmic part of the wall region. Combining (38) and (39), we obtain 

( 1 + F) = !22y+2( 1 + u+ VL),  

which becomes %f = Qyf(1 + u+ V,)Q (40) 
V 

for the logarithmic region when eiw/v 
of U+, V;, and Re, produces 

1. Using (22) to describe y+ as a function 

where 

and 

2!2 
$ = - [(1+ u+ V $ ) L  11, v,+ 
$a = - 2Q [(1+11V,)Ll]. 

VL 

It is necessary to subtract the first three terms of expi$) from exp ($1 in order to  
satisfy the Reichardt condition in the viscous sublayer. (Since exp{$) is much 
larger than the subtracted polynomial terms, little effect of this subtraction is 
seen in the logarithmic region.) Thus, rearranging (41) we obtain 

The generated eM/v  results are shown in figures 17-19 in the form of Q us. $. 
In  the wall region there is a correlation of the blowing results within 20 yo using 
these parameters. This correlation is fair considering that the uncertainty 
associated with s,/v is about f 10 yo. The outer region results of course do not 
correlate on these wall region parameters. The scatter in the innermost region of 
each profile is due to the uncertainties of the present method in obtaining e-,I/v 
from (1 + [eM/v])  as enf /v  < 1 in the sublayer. The unblown and suction profiles 
are in poorest correlation with the blown profiles, being about 50 yo lower for 
$ _N 5 .  



Characteristics of turbulent boundary layers 793 

Equation (42) is shown in figures 17-19 to be within 20 yo agreement with the 
blown results in the wall region. The unblown and suction results do not closely 
agree with (42), being about 50 yo lower. Thus, while EM/v varies strongly with 
V+, and y+, it can be substantially correlated with the variables Q and $. 

0 

0 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

P 
FIGURE 17. -, equation (42): constant h" flows. 

0 0 A 0 V 
V a J ,  0 0.0019 0.0038 0.0078 - 0.0023 
v; 0 0.055 0-153 0.583 - 0.043 
Re, 3177 4301 7130 9732 1738 

5.2.2. T h e  outer region. The cni/8*U, and 118 results from constant V,  and 
V,cc X-o.2 turbulent flow profiles are shown on figures 2&22 for 7 = 0-5. For 
1000 < Re, < 6000, 118 N Reg* while eHI13*U, N Reg%. At higher Reo, 1\13 and 
eM/13*Um are apparently functions of 7 only as shown in figures 23 and 24. 
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To verify the consistency of these eM and 1 results in the outer region with the 
velocity defect relation (24), (24) with (25) or (26) was substituted into the 
integrated momentum equation (44) to produce equations for e,/S*U, and 118. 
The resulting equations are 

1 a2ys 
S =  ( 1 + r 1 7 w ’ ) ~  

l+II+-- 
4!4 1 + B)i 

R2S2 
and - - 

S*U, (1 f rI2yw’) 2QU,(l +B)i  

10 i - - - - 
1 1 1 1 1 1 1 1 1 1 1  

0 1 2 3 4 5 6 7 8 9 1 0 1 1  

+ 
FIGURE 18. -, equation (42); constant B flows. 

O O V O A x  h +  
B 1.74 3.54 5.93 1.75 3.51 5.91 11.66 0 
V, 0.062 0.108 0.161 0.057 0.099 0.147 0.233 0 
Re0 2826 3484 4156 5344 6618 7951 9181 2238 

(43) 

-1 

Y (44) 

2 

0 
- 0.48 
- 0.0232 
1557 
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where 

and 

8 
V 

V 
W 
V 

+ 
+ 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  

II. 
FIGURE 19. -, equation (42) : approximately constant Ree. 

0 0 v n 0 + 
0.0019 0.0095 - - - 

B - - - 0.72 1.79 5.93 

Re, 4318 4301 4290 4286 4519 4156 

V,"lU, 0 

v,' 0 0.055 0.727 0.026 0.059 0.161 
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FIGURE 20. -, equation (45), 11s N Re,$ for Re, < 6000: constant hu and B results. Kleba- 
noff's (1954) unblown data as presented by Escudier (1965), *, and Bradshaw (1967), 
8. Data of Simpson (1967): 

fi"l(PU), B 
x o  0 0.0095 A 11.7 

0 0.0019 N -0.0024 n 0.73 
+ 0.0038 - (j 1.79 
0 0.0078 - 6.78 

o.00099 z -0.0012 V - 0.48 

0.03 

0'01 t 
t 
I I I I I I 1 1 1 1  I t I 1 i 1 1 1 1  

102 103 104 

Re, 

FIGURE 21. -, &MM/um 8*/,,=.o.5 = 0.016, Re, 3 6000, and &MM/um ~*],,=o.s = 0.016 Reit  N n2, 
Re, < 6000: constant f i " / (pU) ,  flows. Klebanoff's (1954) unblown data presented by 
Bradshaw (1967) @. Data of Simpson (1967): 

x .  + 0 0 Z N 
h" / (pU) ,  0 0.00099 0.0019 0.0038 0.0078 0.0095 - 0.0012 - 0.0024 
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Note that 116 N !J and s,/6*U, N !J2 from these equations, a result in agree- 
ment with the generated shear stress s,% and 1 results of figures 20-22. Results 
from (43) and (44) for 0 < B < 11-92 and !J = K = 0.40, using the experimental 
(C,/C,,),,,vs. B curve of figure 5 of Simpson et al. (1969) are shown on figures 25 
and 26. The dependency of these results on B is weak, with e,/S*U, varying by 

0.03 

7 0.02 
c - * 

Lo 

0.01 s w 

- 

- 
- 
- 
- 

i f I L 1 1 1 1 1  I I I I I 1 1 1 1  

X 0 0 + 0 0 Z 
B - 0.48 0 0.73 1.77 3.89 6.79 11.7 

0.12 

Xa 
X 

0.10 

0.08 

% 0.06 
2 

0.04 

0.02 

0.0 
0 

Y P  
FIGURE 23. 116 218. 7, Re0 > 6000. -, equation (45). Klebanoff's (1954) unblown data as 
presented by Escudier (1965), x . Blown data of Simpson (1967) : 

0 0 X + n B v 
- - rjL"/(pU,) 0.0019 0.0078 0 0.0038 - 

- - - 11.7 11-79 6.78 B 
Re, 6583 13971 7750 9429 9181 6706 7846 

- 
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0.0015 between B = 0 and B = 11-7 while 116 varies only in the outer most 
region by 0.015. (This apparent weak blowing dependency in the outermost 
region is probably an artificality produced by the limitations of the E ( y ,  Re,) 
representation as q+ 1.) These variations are within the uncertainty of the 
generated shear stress profile eMIS*Uoo and 116 results, so that there is basic con- 
sistency between (24) and the generated shear stress profile enf/S*Uoo and 116 
results, i.e. ( 2 4 )  implies that clMIB*U, and 116 are substantially independent of' 

n 

blowing in the outer region. 

22 

20 X 

blowing in the outer region. 

22 

20 - X 
O+ 

18 - a + 8 %  20 * a % + t  + 0 
a 

9( ;+cia 
16 - + o  

a 
n g +o 

2 14-  fine 
," 1 2 -  

? LI 
i d a  

XU& X 

0 no + 1 

6 8 10-  

* 8 -  

6 -  
n w 

4 - +o 
0 

2 -u 2 I-u 

g a" 

i d a  
X 

no + 1 

n 
b 

Escudier (1965) presented I / &  results from many unblom non-zero pressure 
gradient flows. He presented a two-layer model with 116 = Qq and Q constant 
near the wall and constant 116 = A, in the outermost region. This model fails to 
closely fit the 116 results from experimental data in the vicinity of q = A,/Q and 
does not provide for the variation of A ,  and !2 with Re, a t  low Reynolds numbers. 
The following single equation model for the outer region is proposed here to 
alleviate both problems : 

where Q = 0.40 (Re,/6000)-* for Re, < 6000 and Q = K = 0.40 for Re, > 6000. 
As shown in figure 23, (45) closely fits Escudier's 116 results from the Klebanoff 
layer and the present permeable wall results for Re, > 6000, hdicating the 
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acceptability of the factor containing the empirical function of 7. The Q depen- 
dence on Re, is likewise in agreement with the results shown on figure 20. In the 
limits, 1/6+&l, as 7+1, and l/cY+Q7, as y+O.-f 

0.08 

0.06 

0.01 I ' I I ' I I I I I I ' I I ' I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Y P  
FIGURE 25. 116 us. 7, Reo > 6000, generated from the velocity defect equation, (24). 

0 X 0 n v 0 
B 0 0.73 1.79 3.53 5.92 11.7 

4L 2 

0 0.1 
1 

0.2 
- 

0.5 0.6 0.7 
Y P  

B - 
0.8 0.9 

1 
0 

FIGURE 26. &M/U, 6* vs. 7, Re, > 6000, generated from the velocity defect equation, (24). 

0 X 0 A v 0 
B 0 0.73 1.79 3.53 5.92 11.7 

t P. Bradshaw, in a private communication, indicates that the (Re,/6000)-* factor can 
be also applied to the 'dissipation length' in the outer 70 yo of the boundary layer for the 
Bradshaw et al. (1967) turbulence energy boundary-layer prediction method. Bradshaw 
et al. (1967) suggest that the dissipation length is independent of moderate blowing and 
suction. The present results support this view since the mixing length and dissipation 
length distributions are each universal for equilibrium boundary layers and the mixing 
length distribution is independent of blowing and moderate suction. 
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6. Discussion and conclusions 
A principal conclusion from this work is that allowing Q to  vary with Re, for 

an unblown flat plate with Re, < 6000 can account for the following: 
(i) The failing of Coles’s law of the wake formulation for Re, < 6000 using a 

constant $2. 

(ii) The UlU, vs. 7 similarity of the outer region for Re, < 6000 in contrast to 
I? vs. 7 similarity for Re, > 6000. 

(iii) The apparent e,,/U, S* N Q2 and 116 N Q variation of the outer region for 
Re, < 6000. 

Specifically, it was found that Q N (&)* N ReBB or UJUm for Re, < 6000 was 
suficient for Coles’s law of the wall-law of the wake formulation to hold and obey 
the U / U ,  vs. 7 similarity of the outer region for this Reynolds number range. 

Several investigators have reported constant values of Q as high as 0.47 and as 
low as 0.39 for unblown flat plate flows (Simpson 1967). Black & Sarnecki (1958) 
attempted to resolve this conflict by examining a source of discrepancy in the 
experimental determination of Q, the problem of determining the ‘true ’ value 
of skin friction. They attempted to adjust the values of Q, C, and U, given by 
various investigators such that U+ = 16.4, y+ = 100 with unchanged OIUm 
vs. yUmIu curves. This procedure did not yield universal values for Q and C .  As 
pointed out by Simpsoii (1967), a second source of discrepancy lies in the choice of 
the ‘best ’ straight line through a set of experimental data points. Certainly, a 
third source of discrepancy is the use of different ‘corrections’ to the velocity 
profile data. A fourth source is pecularities of each different apparatus. 

Until now the variation of C? with Re, for Re, < 6000 has not been recognized. 
Hence, this variation of $2 with Re, may account for some of the reported dis- 
crepancy of Q among various investigations. For example, an investigator may 
obtain zero injection data for 1000 < Re, < 6000 and fit a constant value of Q 
through these data, obtaining a value between 0-5 and 0.4. I n  particular, Black & 
Sarnecki ( 1 % ~ )  report a constant Q = 0.45 for their zero injection experiments 
with 1000 < Re, < 3500. 

It was found that for blown and undersucked flows (dB/dX > 0) Q(Re,), 
E(7, II, Re,) of the velocity defect representation, and 116 and e,,/Ui,S* of the 
outer region are substantially independent of transpiration. On the other hand, 
the ‘ law of the wall ’ velocity and eM/v  distributions near the wall and the velocity- 
defect variable I’ are strong functions of transpiration. 

As was pointed out, the ‘law of the wall’ correlation is strongly dependent 
upon the experimental +Cf values obtained. Thus, if we accept the ;C, results of 
Simpson (1967) as reasonable values supported by the results of other investi- 
gators, then (22) serves as a ‘law of the wall for injection and undersucked layers’ 
with variable Q. Likewise, the variables Q and Y from (42)) which incorporates 
(22), serve to correlate the blowing e,,,/v results near the wall. 

Several problems were more closely defined in conjunction with this study: 
(i) Very little subsonic injection data and undersucked data exist for Re, > 

(ii) As $Cf approaches zero for injection flows, more accurate experimental 
6000, the range for most applications. 
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+Cf values are needed to further verify (22) as a ‘law of the wall with injection’. 
Commonly used techniques will probably not provide this information. As was 
pointed out, +C’ determined from the momentum integral technique is highly 
uncertain for large injection. Any technique using a probe near the wall to 
measure a velocity profile runs the risk of highly disturbing the flow since 8Ul8y 
approaches zero as U approaches zero. Hence, in future efforts to measure 
extremely small gCf values, a technique not disturbing the wall flow should be 
used. 

(iii) As discussed above, some investigators attribute the discrepancy of the 
high blowing $Cfvalues from different apparatus to differences in surface roughness 
and injection geometry. Since no experimental investigation of these effects has 
been made to date, it is difficult to access the relative importance of these effects 
at  high blowing. 

The author is grateful for the encouragement of Professors W. M. Kays and 
R. J. Moffat of Stanford University during the preparation of this work. He 
thanks the Institute of Technology, Southern Methodist University, for financial 
aid. 
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